

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

UCI-AM-09-112

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=pÉêáÉë=
=

Understanding the Requirements for Open Source Software

17 June 2009

by

Dr. Walt Scacchi, Senior Research Scientist, and
Thomas Alspaugh, Assistant Professor

Institute for Software Research

University of California, Irvine

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Understanding the Requirements for Open Source Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697-3455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
U.S. Government or Federal Rights License

14. ABSTRACT
This study presents findings from an empirical study directed at understanding the roles, forms, and
consequences arising in requirements for open source software (OSS) development efforts. Five open
source software development communities are described, examined, and compared to help discover what
differences may be observed. At least two dozen kinds of software informalisms are found to play a critical
role in the elicitation, analysis, specification, validation, and management of requirements for developing
OSS systems. Subsequently understanding the roles these software informalisms take in a new formulation
of the requirements development process for OSS is the focus of this study. This focus enables considering
a reformulation of the requirements engineering process and its associated artifacts or (in)formalisms to
better account for the requirements when developing OSS systems. Other findings identify how OSS
requirements are decentralized across multiple informalisms, and to the need for advances in how to
specify the capabilities of existing OSS systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

65

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli=

Abstract

This study presents findings from an empirical study directed at

understanding the roles, forms, and consequences arising in requirements for open

source software (OSS) development efforts. Five open source software development

communities are described, examined, and compared to help discover what

differences may be observed. At least two dozen kinds of software informalisms are

found to play a critical role in the elicitation, analysis, specification, validation, and

management of requirements for developing OSS systems. Subsequently,

understanding the roles these software informalisms take in a new formulation of the

requirements development process for OSS is the focus of this study. This focus

enables considering a reformulation of the requirements engineering process and its

associated artifacts or (in)formalisms to better account for the requirements when

developing OSS systems. Other findings identify how OSS requirements are

decentralized across multiple informalisms, and to the need for advances in how to

specify the capabilities of existing OSS systems.

Keywords: Open source software, empirical studies, socio-technical systems

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli=

Acknowledgements

The research described in this report is supported by grants #0534771 and

#0808783 from the U.S. National Science Foundation, as well as the Acquisition

Research Program and the Center for the Edge Research Program, both at the

Naval Postgraduate School. No endorsement implied. Chris Jensen, Thomas

Alspaugh, John Noll, Margaret Elliott, and others at the Institute for Software

Research are collaborators on the research project described in this paper.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -
k^s^i=mlpqdo^ar^qb=p`elli=

About the Authors

Walt Scacchi is a senior research scientist and research faculty member at

the Institute for Software Research, University of California, Irvine. He received a

PhD in Information and Computer Science from UC Irvine in 1981. From 1981-1998,

he was on the faculty at the University of Southern California. In 1999, he joined the

Institute for Software Research at UC Irvine. He has published more than 150

research papers, and has directed 45 externally funded research projects. In 2007,

he served as General Chair of the 3rd IFIP International Conference on Open Source

Systems (OSS2007), Limerick, IE.

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455
Tel: (949) 824-4130
Fax: (949) 824-1715
E-mail: wscacchi@ics.uci.edu

Thomas Alspaugh is an Assistant Professor of Informatics in the Donald

Bren School of Information and Computer Sciences, University of California, Irvine.

He received his PhD in Computer Science from North Carolina State University in

2002. His research interests are in software engineering, and focus on informal and

narrative models of software at the requirements level. Before completing his PhD,

he worked as a software developer, team lead, and manager at several companies,

including IBM and Data General; and as a computer scientist at the Naval Research

Laboratory on the Software Cost Reduction project, also known as the A-7E project.

Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455
Tel: (949) 824-4130
Fax: (949) 824-1715
E-mail: alspaugh@ics.uci.edu

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -
k^s^i=mlpqdo^ar^qb=p`elli=

=

UCI-AM-09-112

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=pÉêáÉë=
=

Understanding the Requirements for Open Source Software

17 June 2009

by

Dr. Walt Scacchi, Senior Research Scientist, and
Thomas Alspaugh, Assistant Professor

Institute for Software Research

University of California, Irvine

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ix -
k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents
1. Introduction ..1

2. Understanding OSS Development across Different
Communities ..3

2.1. Networked Computer Game Worlds..3

2.2. Internet/Web Infrastructure..5

2.3. Bioinformatics..5

2.4. Higher Education Computing...6

2.5. Military Computing...8

2.6. Overall Cross-community Characteristics..8

3. Informalisms for Describing OSS Requirements11

4. OSS Processes for Developing Requirements....................................17

4.1. Informal Post-hoc Assertion of OSS Requirements vs.
Requirements Elicitation..18

4.2. Requirements Reading, Sense-making, and Accountability
vs. Requirements Analysis ..24

4.3. Continually Emerging Webs of Software Discourse vs.
Requirements Specification and Modeling28

4.4. Condensing Discourse that Hardens and Concentrates
System Functionality and Community Development vs.
Requirements Validation ...31

4.5. Global access to OSS Webs vs. Communicating
Requirements ..34

4.6. Identifying a Common Foundation for the Development of
OSS Requirements..35

5. Understanding OSS Requirements...37

6. Conclusions..39

List of References...43

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - x -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 1 -
k^s^i=mlpqdo^ar^qb=p`elli=

1. Introduction

The focus in this paper is directed at understanding the requirements

processes for open source software (OSS) development efforts, and how the

development of these requirements differs from those traditional to software

engineering and requirements engineering [5, 9, 23, 40]. This study is about ongoing

discovery, description, and abstraction of OSS development (OSSD) practices and

artifacts in different settings across different communities. It is about expanding our

notions of what requirements need to address to account for OSSD. Subsequently,

these are used to understand what OSS communities are being examined, and what

characteristics distinguish one community from another. This chapter also builds on,

refines, and extends earlier study on this topic [12, 14, 24, 49, 53], as well as

identifying implications for what requirements arise when developing different kinds

of OSS systems.

This study reports on findings and results from an ongoing investigation of the

socio-technical processes, work practices, and community forms found in OSSD [51,

53, 56]. The purpose of this multi-year investigation is to develop narrative, semi-

structured (i.e., hypertextual), and formal computational models of these processes,

practices, and community forms [24, 57]. This chapter presents a systematic

narrative model that characterizes the processes through which the requirements for

OSS systems are developed. The model compares in form, and presents an account

of, how software requirements differ across traditional software engineering and

OSS approaches. This model is descriptive and empirically grounded. The model is

also comparative in that it attempts to characterize an open source requirements

engineering process that transcends the practice in a particular project, or within a

particular community. This comparative dimension is necessary to avoid premature

generalizations about processes or practices associated with a particular OSS

system or those that receive substantial attention in the news media (e.g., the

GNU/Linux operating system). Such comparison also allows for system projects that

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 -
k^s^i=mlpqdo^ar^qb=p`elli=

may follow a different form or version of OSSD (e.g., those in the higher education

computing community or networked computer game arena). Subsequently, the

model is neither prescriptive nor proscriptive in that it does not characterize what

should be or what might be done in order to develop OSS requirements, except in

the concluding discussion, where such remarks are bracketed and qualified.

Comparative case studies of requirements or other software development

processes are also important in that they can serve as foundation for the

formalization of our findings and process models as a process meta-model [37].

Such a meta-model can be used to construct a predictive, testable, and

incrementally refined theory of OSSD processes within or across communities or

projects. A process meta-model is also used to configure, generate, or instantiate

Web-based process modeling, prototyping, and enactment environments that enable

modeled processes to be globally deployed and computationally supported [e.g., 24,

38, 39, 57]. This may be of most value to other academic research or commercial

development organizations that seek to adopt "best practices" for OSSD processes

that are well suited to their needs and situation. Therefore, the study and results

presented in this report denote a new foundation on which computational models of

OSS requirements processes may be developed, as well as their subsequent

analysis and simulation (cf. [48, 57]).

The study reported here entails the use of empirical field study methods [67]

that follow conform to the principles for conducting and evaluating interpretive

research design [28] as identified earlier [49].

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3 -
k^s^i=mlpqdo^ar^qb=p`elli=

2. Understanding OSS Development across
Different Communities

We assume there is no general model or globally accepted framework that

defines how OSS is or should be developed. Subsequently, our starting point is to

investigate OSS practices in different communities from an ethnographically

informed perspective [20, 28, 62]. We have chosen five different communities to

study. These are centered about the development of software for networked

computer games, Internet/Web infrastructure, bioinformatics, higher education

computing, and military computing. The following sections briefly introduce and

characterize these OSS sub-domains. Along the way, example software systems or

projects are highlighted or identified via external reference/citation, which can be

consulted for further information or review.

2.1. Networked Computer Game Worlds
Participants in this community focus on the development and evolution of first

person shooters (FPS) games (e.g., Quake Arena, Unreal Tournament), massive

multiplayer online role-playing games (e.g., World of Warcraft, Lineage, EveOnline,

City of Heroes), and others (e.g., The Sims (Electronic Arts), Grand Theft Auto
(Rockstar Games)). Interest in how to develop or modify networked computer games

and gaming environments, as well as their single-user counterparts, have exploded

in recent years as a major (now global) mode of entertainment, playful fun, and

global computerization movement [50]. The release of DOOM [31], an early first-

person action game, onto the Web in open source form1 in the mid 1990’s, began

1 The end-user license agreement for games that allow for end-user created game mods often
stipulate that the core game engine (or retail game software product) is protected as closed source,
proprietary software that cannot be examined or redistributed, while any user created mod can only
be redistributed as open source software that cannot be declared proprietary or sold outright, and
must only be distributed in a manner where the retail game product must be owned by any end-user
of a game mod. This has the effect of enabling a secondary market for retail game purchases by end-
users or other game modders who are primarily interested in accessing, studying, playing, further
modifying, and redistributing a game mod.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 4 -
k^s^i=mlpqdo^ar^qb=p`elli=

what is widely recognized the landmark event that launched the development and

redistribution of computer game mods [6, 49, 50].

Mods2 are variants of proprietary (closed source) computer game engines that

provide extension mechanisms like game scripting languages (e.g., UnrealScript for

mod development with Unreal game engines) that can be used to modify and extend

a game, and these extensions are licensed for distribution in an open source

manner. Mods are created by small numbers of users who want and are able to

modify games, compared to the huge numbers of players that enthusiastically use

the games as provided. The scope of mods has expanded to now include new game

types, game character models and skins (surface textures), levels (game play

arenas or virtual worlds), and artificially intelligent game bots (in-game opponents).

Perhaps the most widely known and successful game mod is Counter-Strike,

which is a total conversion of Valve Software's Half-Life computer game developed by

two game programmers (Valve Software has since commercialized CS and many

follow-on versions). Millions of copies of CS have been distributed, and millions of

people have player CS over the Internet, according to http://counterstrikesource.net/.

Other popular computer games that are frequent targets for modding include the

Quake, Unreal, Half-Life, and Crysis game engines, NeverWinter Nights for role-playing

games, motor racing simulation games (e.g., GTR series), and even the massively

popular World of Warcraft (which only allows for modification of end-user interfaces).

Thousands of game mods are distributed through game mod portals like

MODDB.com. However, many successful game companies including Electronic Arts

and Microsoft do not embrace nor encourage game modding, and do not provide

end-user license agreements that allow game modding and redistribution.

2 For introductory background on computer game mods, see
http://en.wikipedia.org/wiki/Mod_(computer_gaming).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 5 -
k^s^i=mlpqdo^ar^qb=p`elli=

2.2. Internet/Web Infrastructure
Participants in this community3 focus on the development and evolution of

systems like the Apache web server, Mozilla/Firefox Web browser4, GNOME and K

Development Environment (KDE) for end-user interfaces, the Eclipse and NetBeans

interactive development environments for Java-based Web applications, and

thousands of others. This community can be viewed as the one most typically

considered in popular accounts of OSS projects. The GNU/Linux operating system

environment is of course the largest, most complex, and most diverse sub-

community within this arena, so much so that it merits separate treatment and

examination. Many other Internet or Web infrastructure projects constitute

recognizable communities or sub-communities of practice. The software systems

that are the focus generally are not standalone end-user applications, but are often

targeted at system administrators or software developers as the targeted user base,

rather than the eventual end-users of the resulting systems. However, notable

exceptions like Web browsers, news readers, instant messaging, and graphic image

manipulation programs are growing in number within the end-user community

2.3. Bioinformatics
Participants in this community5 focus on the development and evolution of

software systems supporting research into bioinformatics and related computing-

3 The SourceForge web portal (http://www.sourceforge.net), the largest associated with the
OSS community, currently stores information on more than 1,750K registered users and developers,
along with nearly 200K OSSD projects (as of July 2008), with more than 10% of those projects
indicating the availability of a mature, released, and actively supported software system. However,
some of the most popular OSS projects have their own family of related projects, grouped within their
own portals, such as for the Apache Foundation and Mozilla Foundation.

4 It is reasonable to note that the two main software systems that enabled the World Wide
Web, the NCSA Mosaic Web browser (and its descendants, like Netscape Navigator, Mozilla, Firefox,
and variants like K-Meleon, Konqueror, SeaMonkey, and others), and the Apache Web server
(originally know as httpd) were originally and still remain active OSSD projects.

5 For information about OSS projects, activities, and events in this community, see
http://www.bioinformatics.org, http://www.open-bio.org, and http://www.open-
bio.org/wiki/Upcoming_BOSC_conference.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 6 -
k^s^i=mlpqdo^ar^qb=p`elli=

intensive biological research efforts. In contrast to the preceding two development

oriented communities, OSS plays a significant role in scientific research

communities. For example, when scientific findings or discoveries resulting from in

silico experimentation or observations are reported6, then members of the relevant

scientific community want to be assured that the results are not the byproduct of

some questionable software calculation or opaque processing trick. In scientific

fields like astrophysics that critically depend on software, open source is considered

an essential precondition for research to proceed, and for scientific findings to be

trusted and open to independent review and validation. Furthermore, as discoveries

in bioinformatics are made, this in turn often leads to modification or extension of the

astronomical software in use in order to further explore and analyze newly observed

phenomena, or to modify/add capabilities to how in silico mechanisms operate.

2.4. Higher Education Computing
Participants in this community focus on the development and evolution of

software supporting educational and administrative operations found in large

universities or similar institutions. This community should not in general be

associated with the activities of academic computer scientists nor of computer

science departments, unless they specifically focus on higher education computing

applications (which is uncommon). People who participate in this community

generally develop software for academic teaching or administrative purposes in

order to explore topics like course management (Sakai, Moodle), campuswide

information systems/portals (uPortal), Web-based academic applications (Fluid), and

university e-business systems [54] (for collecting student tuition, research grants

6 For example, see [4]. The OSS processing pipelines for each sensor or mass spectrometer
are mostly distinct and are maintained by different organizations. However, their outputs must be
integrated, and the data source must be registered and oriented for synchronized alignment or
overlay, then composed into a final representation (e.g., see [4]). Subsequently, many OSS programs
may need to be brought into alignment for such a research method and observation,for a scientific
discovery to be claimed and substantiated [41].

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7 -
k^s^i=mlpqdo^ar^qb=p`elli=

administration, payroll, etc. -- Kuali). Projects in this community7 are primarily

organized and governed through multi-institution contracts, annual subscriptions,

and dedicated staff assignments [64]. Furthermore, it appears that software

developers in this community are often not the end-users of the software the

develop, in contrast to most OSS projects. Accordingly, it may not be unreasonable

to expect that OSS developed in this community should embody or demonstrate

principles or best practices in administrative computing found in large public or non-

profit enterprises, rather than OSSD projects focused on Internet/Web infrastructure.

This includes the practice of developing explicit software requirements specification

documents prior to undertaking system development. Furthermore, much like the

bioinformatics community, members of this community expect that when

breakthrough technologies or innovations have been declared, such as in a refereed

conference paper or publication in an educational computing journal, the opportunity

exists for other community members to be able to access, review, or try out the

software to assess and demonstrate its capabilities. Furthermore, there appears to

be growing antagonism toward commercial software vendors (Blackboard Inc.,

PeopleSoft, Oracle) whose products target the higher education computing market

(e.g., WebCT). However, higher education computing software is intended for

routine production use by administrative end-users and others, and not research-

grade “proof of concept” demonstration or prototype systems that are found in

academic research laboratories.

7 For information about OSS projects, events, and activities in this community, see
http://www.sakaiproject.org, http://www.moodle.org, http://www.uportal.org,
http://www.fluidproject.org, http://www.kuali.org, as well as EDUCAUSE (http://www.educause.edu/),
a non-profit association focusing on current issues in information technology for higher education,
including OSS development and OSS policy in academia.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 8 -
k^s^i=mlpqdo^ar^qb=p`elli=

2.5. Military Computing
Participants in this community8 focus on the development and deployment of

computing systems and applications that support secured military and combat

operations. Although information on specific military systems may be limited, there

are a small but growing number of sources of public information and OSS projects

that support military and combat operations. Accordingly, it is becoming clear that

the future of military computing, and the future acquisition of software-intensive,

mission-critical systems for military or combat applications will increasingly rely on

OSS [3, 18, 26, 44, 55, 60, 63, 65]. For example, the U.S. Army relies on tactical

command and control systems hosted on Linux systems that support Apache Tomcat

servers, Jabber/XMPP chat services, and JBoss-based Web services [26]. Other

emerging applications are being developed for future combat systems, enterprise

systems (the U.S. Department of Defense is the world's largest enterprise, with more

than 1 million military and civilian employees), and various training systems, among

others [60, 63, 65]. The development of software systems for developing simulators

and game-based virtual worlds [36] are among those military software projects that

operate publicly as a “traditional” OSS project that employs a GPL software license,

while other projects operate as corporate source (i.e., OSS projects behind the

corporate firewall) or community source projects, much like those identified for

higher education computing [64].

2.6. Overall Cross-community Characteristics
In contrast to efforts that draw attention to generally one (but sometimes

many) open source development project(s) within a single community [e.g., 11, 42,

43], there is something to be gained by examining and comparing the communities,

processes, and practices of OSSD in different communities. This may help clarify

8 The primary source of information about OSS projects in the military comes from the cited
references, rather than from publicly accessible Web sites. However, there are a few Military OSS
projects accessible on the Web such as the Delta3D game engine at http://www.Delta3D.org, used to
developed military training simulations.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 9 -
k^s^i=mlpqdo^ar^qb=p`elli=

what observations may be specific to a given community (e.g., GNU/Linux projects),

compared to those that span multiple, and mostly distinct communities. In this study,

two of the communities are primarily oriented to develop software to support

scholarly research or institutional administration (bioinformatics and higher education

computing) with rather small user communities. In contrast, the other three

communities are oriented primarily towards software development efforts that may

replace/create commercially viable systems that are used by large end-user

communities. Thus, there is a sample space that allows comparison of different

kinds.

Each of these highlighted items point to the public availability of data that can

be collected, analyzed, and re-represented within narrative ethnographies [20, 29],

computational process models [37, 48, 57], or for quantitative studies [21, 35].

Significant examples of each kind of data have been collected and analyzed as part

of this ongoing study. This paper includes a number of OSSD artifacts as data

exhibits that empirically ground our analysis. These artifacts serve to document the

social actions and technical practices that facilitate and constrain OSSD processes

[13, 14, 25, 53, 56]. Subsequently, we turn to review what requirements engineering

is about, in order to establish how the process of developing OSS system

requirements is similar or different than is common to traditional software

engineering and information system development practices.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 10 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 11 -
k^s^i=mlpqdo^ar^qb=p`elli=

3. Informalisms for Describing OSS Requirements

The functional and non-functional requirements for OSS systems are elicited,

analyzed, specified, validated, and managed through a variety of Web-based

artifacts. These descriptive documents can be treated as software informalisms.

Software informalisms [49] are the information resources and artifacts that

participants use to describe, proscribe, or prescribe what's happening in a OSSD

project. They are informal narrative resources codified in lean descriptions [cf. 66]

that coalesce into online document genres (following [32, 59]) that are comparatively

easy to use, and publicly accessible to those who want to join the project, or just

browse around. In earlier work, Scacchi [49] demonstrates how software

informalisms can take the place of formalisms, like “requirement specifications” or

software design notations which are documentary artifacts seen as necessary to

develop high quality software according to the software engineering community [5, 9,

23, , 40]. Yet these software informalisms often capture the detailed rationale,

contextualized discourse, and debates for why changes were made in particular

development activities, artifacts, or source code files. Nonetheless, the contents

these informalisms embody require extensive review and comprehension by a

developer before contributions can be made [cf. 33]. Finally, the choice to designate

these descriptions as informalisms9 is to draw a distinction between how the

requirements of OSS systems are described, in contrast to the recommended use of

formal, logic-based requirements notations (“formalisms”) that are advocated in

traditional approaches [cf. 5, 9, 23, , 40].

In OSSD projects, software informalisms are the preferred scheme for

describing or implicitly representing OSS requirements. There is no explicit objective

9 As Goguen [19] observes, formalisms are not limited to those based on a mathematical logic
or state transition semantics, but can include descriptive schemes that are formed from structured or
semi-structured narratives, such as those employed in Software Requirements Specifications
documents.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 12 -
k^s^i=mlpqdo^ar^qb=p`elli=

or effort to treat these informalisms as "informal software requirements" that should

be refined into formal requirements [8, 23, 30] within any of these communities.

Accordingly, each of the available types of software requirements informalisms have

been found in one or more of the five communities in this study. Along the way, we

seek to identify some of the relations that link them together into more

comprehensive stories, storylines, or intersecting story fragments that help convey

as well as embody the requirements of an OSS system. Knowledge about who is

doing what, where, when, why, and how is captured in different or multiple

informalisms.

Two dozen types of software informalisms can be identified, and each has

sub-types that can be identified. Those presented here are members of the set of

software informalisms that are being used by different OSSD projects. Each OSSD

project usually employs only a subset as its informal document ecology [cf. 32, 59]

that meets their interests or needs. There are no guidelines for which informalisms to

use for what, only observed practices that recur across OSSD projects. Thus it is

pre-mature and perhaps inappropriate to seek to further organize these informalisms

into a classification or taxonomic scheme whose purpose is to prescribe when or

where best to use one or another. Subsequently, they are presented here as an

unordered list since to do so otherwise would transform this analysis from empirically

ground, interpretative descriptions into untested, hypothetical prescriptions [cf. 28,

61].

The most common informalisms used in OSSD projects include (i)

communications and messages within project Email [66], (ii) threaded message

discussion forums (see Exhibit 1), bulletin boards, or group blogs, (iii) news postings,

and (iv) instant messaging or Internet relay chat. These enable developers and

users to converse with one another in a lightweight, semi-structured manner, and

now use of these tools is global across applications domains and cultures. As such,

the discourse captured in these tools is a frequent source of OSS requirements. A

handful of OSSD projects have found that summarizing these communications into

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 13 -
k^s^i=mlpqdo^ar^qb=p`elli=

(v) project digests [14] helps provide an overview of major development activities,

problems, goals, or debates. These project digests represent multi-participant

summaries that record and hyperlink the rationale accounting for focal project

activities, development problems, current software quality status, and desired

software functionality. Project digests (which sometimes are identified as “kernel

cousins”) record the discussion, debate, consideration of alternatives, code patches

and initial operational/test results drawn from discussion forums, online chat

transcripts, and related online artifacts [cf. 14]. Exhibit 110 provides an example of a

project digest from the GNUe electronic business software project.

As OSS developers and user employ these informalisms, they have been

found to also serve as carriers of technical beliefs and debates over desirable

software features, social values (e.g., reciprocity, freedom of choice, freedom of

expression), project community norms, as well as affiliation with the global OSS

social movement [12, 13, 53].

10 Each exhibit appears as a screenshot of a Web browsing session. It includes contextual
information seen in a more complete display view, as is common in virtual ethnographic studies [cf.
20, 53, 57].

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 1: A project digest that summarizes multiple messages including those
hyperlinked (indicated by highlighted and underlined text fonts) to their originating
online sources. Source: http://www.kerneltraffic.org/GNUe/latest.html, July 2006.

Other common informalisms include (vi) scenarios of usage as linked Web

pages or screenshots, (vii) how-to guides, (viii) to-do lists, (ix) Frequently Asked

Questions, and other itemized lists, and (x) project Wikis, as well as (xi) traditional

system documentation and (xii) external publications [e.g., 16, 17]. OSS (xiii) project

property licenses (whether to assert collective ownership, transfer copyrights, insure

“copyleft,” or some other reciprocal agreement) are documents that also help to

define what software or related project content are protected resources that can

subsequently be shared, examined, modified, and redistributed.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 15 -
k^s^i=mlpqdo^ar^qb=p`elli=

Finally, (xiv) open software architecture diagrams, (xv) intra-application

functionality realized via scripting languages like Perl and PhP, and the ability to

either (xvi) incorporate externally developed software modules or “plug-ins”, or (xvii)

integrate software modules from other OSSD efforts, are all resources that are used

informally, where or when needed according to the interests or actions of project

participants.

All of the software informalisms are found or accessed from (xix) project

related Web sites or portals. These Web environments are where most OSS

software informalisms can be found, accessed, studied, modified, and redistributed

[49].

A Web presence helps make visible the project's information infrastructure

and the array of information resources that populate it. These include OSSD multi-

project Web sites (e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org,

Apache.org, Mozilla.org), community software Web sites (PhP-Nuke.org), and

project-specific Web sites (e.g., www.GNUenterprise.org), as well as (xx) embedded

project source code Webs (directories), (xxi) project repositories (CVS [16]), and

(xxii) software bug reports and (xxiii) issue tracking data base like Bugzilla [45,

http://www.bugzilla.org/]. Last, giving the growing global interest in online social

networking, it not surprising to find increased attention to documenting various kinds

of social gatherings and meetings using (xxiv) social media Web sites (e.g,

YouTube, Flickr, MySpace, etc.) where OSS developers, users, and interested

others come together to discuss, debate, or work on OSS projects, and to use these

online media to record, and publish photographs/videos that establish group identity

and affiliation with different OSS projects.

Together, these two dozen types of software informalisms constitute a

substantial yet continually evolving web of informal, semi-structured, or processable

information resources that capture, organize, and distribute knowledge that embody

the requirements for an OSSD project. This web results from the hyperlinking and

cross-referencing that interrelate the contents of different informalisms together.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 16 -
k^s^i=mlpqdo^ar^qb=p`elli=

Subsequently, these OSS informalisms are produced, used, consumed, or reused

within and across OSSD projects. They also serve to act as both a distributed virtual

repository of OSS project assets, as well as the continually adapted distributed

knowledge base through which project participants evolve what they know about the

software systems they develop and use (cf. [38]).

Overall, it appears that none of these software informalisms would defy an

effort to formalize them in some mathematical logic or analytically rigorous notation.

Nonetheless, in the three of the five software communities examined in this study,

there is no perceived requirement for such formalization (except for higher education

computing and military computing), as the basis to improve the quality, usability, or

cost-effectiveness of the OSS systems. If formalization of these documentary

software informalisms has demonstrable benefit to members of these communities,

beyond what they already realize from current practices, these benefits have yet to

be articulated in the discourse that pervades each community. However, in contrast,

the higher education and military communities do traditionally employ and develop

formal requirements specification documents in order to coordinate and guide

development of their respective “community source” software projects. Thus, we

examine and compare these requirements development practices across all five

communities so as to surface similarities, differences, and their consequences.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 17 -
k^s^i=mlpqdo^ar^qb=p`elli=

4. OSS Processes for Developing Requirements

In contrast to the world of classic software engineering, OSSD communities

do not seem to readily adopt or practice modern software engineering or

requirements engineering processes. Perhaps this is no surprise. If the history of

software engineering were to reveal that one of the driving forces for capture and

formalize software requirements was to support the needs of procurement and

acquisition officials (i.e., not actual users of the resulting software) who want to be

sure they know what some future software system is suppose to do once delivered,

then requirements (documents) serve as the basis for software development

contracts, delivery, and payment schedules. Software requirements are traditionally

understood to serve a role in the development of proposed systems prior to their

development [cf. 5], rather than for software systems that continuously emerge from

networks of socio-technical interactions across a diverse ecosystem of users,

developers, and other extant software systems [51, 53, 61]. However, OSS

communities do develop software that is extremely valuable, generally reliable, often

trustworthy, and readily used within its associated user community. So, what

processes or practices are being used to develop the requirements for OSS

systems?

We have found many types of software requirements activities being

employed within or across the five communities. However, what we have found in

OSSD projects is different from common prescriptions for requirements engineering

processes that seem to embraced in varying degrees by the higher education and

military community source projects. The following subsections present six kinds of

OSS requirements activities and associated artifacts that are compared with those

traditional to software requirements engineering.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 18 -
k^s^i=mlpqdo^ar^qb=p`elli=

4.1. Informal Post-hoc Assertion of OSS Requirements vs.
Requirements Elicitation

It appears that OSS requirements are articulated in a number of ways that are

ultimately expressed, represented, or depicted on the Web. On closer examination,

requirements for OSS can appear or be implied within an email message or within a

discussion thread that is captured and/or posted on a Web site for open review,

elaboration, refutation, or refinement. Consider the following example found on the

Web site for the Avogardo molecular editor tool (http://avogadro.openmolecules.net)

in the bioinformatics community. This example displayed in Exhibit 2 reveals the

specification “We should use platform libraries when present. So for KDE, if the

kdelibs are present, we should use them.” As noted earlier, KDE is an Internet

infrastructure community project.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 19 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 2. A sample of an asserted requirement to use the kdelibs platform libraries.
Source:

http://sourceforge.net/tracker/index.php?func=detail&aid=1851183&group_id=16531
0&atid=835080, June 2008.

These capabilities (appearing near the bottom of Exhibit 2) highlight implied

requirements for the need or desirability of full integration of the Avogadro editor with

the KDE functional command dialog system. These requirements are simply

asserted without reference to other documents, standards, or end-user focus

groups—they are requirements because some developers wanted these capabilities.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 20 -
k^s^i=mlpqdo^ar^qb=p`elli=

Perhaps it is more useful to define OSS requirements as asserted system

capabilities. These capabilities are post hoc requirements characterizing a

functional capability that has already been implemented, either in the system at

hand, or by reference to some other related system that already exists. Based on

observations and analyses presented here and elsewhere [12, 14, 24, 25, 49, 50,

53], it appears that concerned OSS developers assert and justify software system

capabilities they support through their provision of the required coding effort to make

these capabilities operational, or to modification of some existing capability which

may be perceived as limited or sometimes deficient. Senior members or core

developers in the community then vote or agree through discussion to include the

asserted capability into the system’s feature set [15], or at least, not to object to their

inclusion. The historical record of their discourse and negotiation may be there,

within the email or discussion forum archive, to document who required what, where,

when, why, and how. However, once asserted, there is generally no further effort

apparent to document, formalize, or substantiate such a capability as a system

requirement. Asserted capabilities then become taken-for-granted requirements that

are can be labeled or treated as obvious to those familiar with the system's

development.

Another example reveals a different kind required OSSD capability. This case

displayed in Exhibit 3, finds a “mission” document that conveys a non-functional

requirement for both community development and community software development

in the bottom third of the exhibit. This can be read as a non-functional requirement

for the system’s developers to embrace community software development as the

process to develop and evolve the ArgoUML system, rather than through a process

that relies on the use of system models represented as UML diagrams.

Perhaps community software development, and by extension, community

development, are recognized as socio-technical capabilities that are important to the

development and success of this system. Regular practice of such capabilities may

also be a method for improving system quality and reliability that can be compared

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 21 -
k^s^i=mlpqdo^ar^qb=p`elli=

to functional capabilities of existing software engineering tools and techniques that

seem to primarily focus on technical or formal analysis of software development

artifacts as the primary way to improve quality and reliability.

The next example reveals yet another kind of elicitation found in the

Internet/Web infrastructure community. In Exhibit 4, we see an overview of the

MONO project. Here we see multiple statements for would-be software

component/class owners to sign-up and commit to developing the required ideas,

run-time, (object service) classes, and projects [cf. 25]. These are non-functional

requirements for people to volunteer to participate in community software

development, in a manner perhaps compatible with that portrayed in Exhibit 3.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 22 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 3. An OSS mission statement encouraging both the development of
software for the community and development of the community. Source:

http://www.tigris.org, June 2008.

The systems in Exhibit 3 must also be considered early in their overall

development or maturity, because it calls for functional capabilities that are needed

to help make the desired software functionality sufficiently complete for future usage.

However, these yet “Todo” software implementation tasks signal to prospective OSS

developers, who may want to join a project, as to what kinds of new software

functionalities are desired, and thus telegraph a possible pathway for how to become

a key contributor within a large, established OSSD project [25] by developing a

proposed software system component or function that some core developer desires.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 23 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 4: A non-functional requirement identifying a need for volunteers to become
owners for yet to be developed software components whose functional requirements

are still somewhat open and yet to be determined. Source: http://www.mono-
project.com/Todo, June 2008.

Thus, in understanding how the capabilities and requirements of OSS

systems are elicited, we find evidence for elicitation of volunteers to come forward to

participate in community software development by proposing new software

development projects, but only those that are compatible with the OSS engineering

mission for the Tigris.org community.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 24 -
k^s^i=mlpqdo^ar^qb=p`elli=

We also observe the assertion of requirements that simply appear to exist

without question or without trace to a point of origination, rather than somehow being

elicited from stakeholders, customers, or prospective end-users of OSS systems. As

previously noted, we have not yet found evidence or data to indicate the occurrence

or documentation of a requirements elicitation effort arising in a traditional OSSD

project. However, finding such evidence would not invalidate the other observations;

instead, it would point to a need to broaden the scope of how software requirements

are captured or recorded. For example, community source projects found in the

higher education community seek to span OSSD practices with traditional software

engineering practices, which results in hybrid software development and software

requirements practices that do not seem to fully realize the practices (or benefits) of

OSS engineering projects like those found at Tigris.org. Early experiences with such

a hybrid scheme suggest that successful software production may not directly follow

[47].

4.2. Requirements Reading, Sense-making, and Accountability
vs. Requirements Analysis

Software requirements analysis helps identify what problems a software

system is suppose to address and why, while requirements specifications identify a

mapping of user problems to system based solutions. In OSSD, how does

requirements analysis occur, and where and how are requirements specifications

described? Though requirements analysis and specification are interrelated

activities, rather than distinct stages, we first consider examining how OSS

requirements are analyzed. In Exhibit 5 from the networked game community for the

computer game Unreal Tournament (aka, UT3), it seems that game mod

developers are encouraged to produce multi-version, continuously improving game

mods, so that they can subsequently be recognized as professional game

developers. Thus, OSS developers learn that achieving enhanced social status

requires development of new software functions (mods) that improve across

versions.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 25 -
k^s^i=mlpqdo^ar^qb=p`elli=

In seeking to analyze what is needed to more capably develop UT3 game

mods, a game developer may seek additional information from other sources to

determine how best to satisfy the challenge of developing a viable game mod. This

in turn may lead one to discover and review secondary information sources, such as

that shown in Exhibit 6. This exhibit points to still other Web-based information

sources revealing both technical and social challenges that must be addressed to

successfully develop a viable game mod.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 26 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 5. An asserted capability (in the center) that invites would-be OSS game
developers to make UT3 game mods, including improved versions, of whatever kind

they require among the various types of available extensions so they may “get
professional status,” and possibly win money or other contest prizes. Source:

http://www.ut3modding.com/, June 2008.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 27 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 6: Understanding and analyzing what you need to know and do in order to
develop a game mod. Source: http://wiki.beyondunreal.com/wiki/Making_Mods, May

2006.
The notion that requirements for OSS system are, in practice, analyzed via

the reading of technical accounts as narratives, together with making sense of how

such readings are reconciled with one’s prior knowledge, is not unique to the game

modding software community. These same activities can and do occur in the other

three communities. If one reviews the functional and non-functional requirements

appearing in Exhibits 1-6, it is possible to observe that none of the descriptions

appearing in these exhibits is self-contained. Instead, each requires the reader (e.g.,

a developer within the community) to closely or casually read what is described,

make sense of it, consult other materials or one’s expertise, and trust that the

description’s author(s) are reliable and accountable in some manner for the OSS

requirements that has been described [19, 42]. Analyzing OSS requirements entails

little/no automated analysis, formal reasoning, or visual animation of software

requirements specifications prior to the development of proposed software

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 28 -
k^s^i=mlpqdo^ar^qb=p`elli=

functionality [cf. 5, 40]. Instead, emphasis focuses on understanding what has

already been accomplished in existing, operational system functionality, as well as

what others have written and debated about it in different, project-specific

informalisms. Subsequently, participants in these communities are able to

understand what the functional and non-functional requirements are in ways that are

sufficient to lead to the ongoing development of various kinds of OSS systems.

4.3. Continually Emerging Webs of Software Discourse vs.
Requirements Specification and Modeling

If the requirements for OSS systems are asserted after code-based

implementation rather than elicited prior to development of proposed system

functionality, how are these OSS requirements specified or modeled? In traditional

software development projects, the specification of requirements may be a

deliverable required by contract. In most OSSD projects, there are no such

contractual obligations, and there are no requirements specification documents. In

examining data from the five communities, of which Exhibits 1-6 are instances, it is

becoming increasingly apparent that OSS capabilities can emerge both from the

experiences of community participants using the software, as well as through

iterative discussion and debate rendered in email and discussion forums. These

communication messages in turn give rise to the development of narrative

descriptions that more succinctly specify and condense into a web of discourse

about the functional and non-functional requirements of an OSS system. This

discourse is rendered in multiple, dispersed descriptions that can be found in email

and discussion forum archives, on Web pages that populate community Web sites,

and in other informal software descriptions that are posted, hyperlinked, or passively

referenced through the assumed common knowledge that community participants

expect their cohorts to possess. In this way, participating OSS developers and users

collectively develop a deep, situated understanding of the capabilities they have

realized and how unrealized needs must be argued for, negotiated, and otherwise

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 29 -
k^s^i=mlpqdo^ar^qb=p`elli=

be found to be obvious to the developers who see it in their self-interest to get them

implemented.

In Exhibit 7 from the bioinformatics community, we see passing reference to

the implied socio-technical requirement for bioinformatics scientists to program and

orchestrate an e-science workflow to perform their research computing tasks. Such

workflows are needed to realize a multi-step computational process that can be

satisfied through an e-science tool/framework like Taverna [cf. 22, 41]. To

comprehend and recognize what the requirements for bioinformatics workflows are

in order to determine how to realize some bioinformatics data analysis or in silico

experiment, community members who develop OSS for such applications will often

be bioinformatics scientists (e.g., graduate students or researchers with Ph.D.

degrees), and rarely would be simply a competent software engineering

professional. Consequently, the bioinformatics scientists that develop software in

this community do not need to recapitulate any software system requirement of the

problem domain (e.g., microbiology). Instead, community members are already

assumed to have mastery over such topics prior to software development, rather

than encountering problems in their understanding of microbiology arising from

technical problems in developing, operation, or functional enhancement of

bioinformatics software. Subsequently, discussion and discourse focuses on how to

use and extend the e-science workflow software in order to accomplish the scientific

research to be realized through a computational workflow specification. Thus, a web

of discourse can emerge about the functional requirement for specifying

computational workflows that can be supported and documented by the software

capabilities of an OSS workflow modeling tool like Traverna [41], rather than for

specifying the functionality of the tool.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 30 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 7: A description with embedded screenshot example of the Taverna tool
framework for bioinformatics scientists suggesting why and how to develop

workflows for computational processes needed to perform a complex data analysis
or in silico research experiment [41]. Source http://taverna.sourceforce.net June

2008.

Thus, spanning the five communities and the seven exhibits, we begin to

observe that the requirements for OSS are specified in webs of discourse that

reference or link:

 email, bboard discussion threads, online chat transcripts or project
digests,

 system mission statements,

 ideas about system functionality and the non-functional need for
volunteer developers to implement the functionality,

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 31 -
k^s^i=mlpqdo^ar^qb=p`elli=

 promotional encouragement to specify and develop whatever
functionality you need, which might also help you get a new job, and

 scholarly scientific research tools and publications that underscore how
the requirements of bioinformatics software though complex, are
understood without elaboration, since they rely on prior scientific
knowledge and tradition of open scientific research.

Each of these modes of discourse, as well as their Web-based specification

and dissemination, is a continually emerging source of OSS requirements from new

contributions, new contributors or participants, new ideas, new career opportunities,

and new research publications.

4.4. Condensing Discourse that Hardens and Concentrates
System Functionality and Community Development vs.
Requirements Validation

Software requirements are validated with respect to the software’s

implementation. The implemented system can be observed to demonstrate, exhibit,

or be tested in operation to validate that its functional behavior conforms to its

functional requirements. How are the software implementations to be validated

against their requirements OSS requirements when they are not recorded in a formal

Software Requirements Specifications document, nor are these requirements

typically cast in a mathematical logic, algebraic, or state transition-based notational

scheme?

In each of the five communities, it appears that the requirements for OSS are

co-mingled with design, implementation, and testing descriptions and software

artifacts, as well as with user manuals and usage artifacts (e.g., input data, program

invocation scripts). Similarly, the requirements are spread across different kinds of

artifacts including Web pages, sites, hypertext links, source code directories,

threaded email transcripts, and more. In each community, requirements are routinely

described, asserted, or implied informally. Yet it is possible to observe in threaded

email discussions that community participants are able to comprehend and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 32 -
k^s^i=mlpqdo^ar^qb=p`elli=

condense wide-ranging software requirements into succinct descriptions using lean

media that pushes the context for their creation into the background.

Consider the next example found on the Web site for the KDE system

(http://www.kde.org/), within the Internet/Web Infrastructure community. This

example displayed in Exhibit 8 reveals asserted capabilities for the Qt3 subsystem

within KDE, as well as displaying and documenting the part of the online discourse

that justifies and explains the capabilities of the Qt3 subsystem in a manner that

concentrates attention to processing features that the contributors find rationalizes

the Qt3 requirements.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 33 -
k^s^i=mlpqdo^ar^qb=p`elli=

Exhibit 8. Asserted requirements and condensed justifications producing a
hardened rationale for the KDE software subsystem Qt3 expressed through an

online discourse. Source: http://dot.kde.org/996206041/, July 2001.

Goguen [19] suggests the metaphor of "concentrating and hardening of

requirements" as a way to characterize how software requirements evolve into forms

that are perceived as suitable for validation. His characterization seems to quite

closely match what can be observed in the development of requirements for OSS.

We find that requirements validation is a by-product, rather than an explicit goal, of

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 34 -
k^s^i=mlpqdo^ar^qb=p`elli=

how OSS requirements are constituted, described, discussed, cross-referenced, and

hyperlinked to other informal descriptions of system and its implementations.

4.5. Global access to OSS Webs vs. Communicating
Requirements

One distinguishing feature of OSS associated with each of the five

communities is that their requirements, informal as they are, are organized and

typically stored in a persistent form that is globally accessible. This is true of

community Web sites, site contents and hyperlinkage, source code directories,

threaded email and other online discussion forums, descriptions of known bugs and

desired system enhancements, records of multiple system versions, and more.

Persistence, hypertext-style organization and linkage, and global access to OSS

descriptions appear as conditions that do not receive much attention within the

classic requirements engineering approaches, with few exceptions [8]. Yet, each of

these conditions helps in the communication of OSS requirements. These conditions

also contribute to the ability of community participants or outsiders looking in to trace

the development and evolution of software requirements both within the software

development descriptions, as well as across community participants. This enables

observers or developers to navigationally trace, for example, a web of different

issues, positions, arguments, policy statements, and design rationales that support

(e.g., see Exhibit 8) or challenge the viability of emerging software requirements [cf.

7, 34].

Each of the five communities also communicates community-oriented

requirements. These non-functional requirements may seem similar to those for

enterprise modeling [40, 46]. However, there are some differences, though they may

be minor. First, each community is interested in sustaining and growing the

community as a development enterprise [cf. 38]. Second, each community is

interested in sustaining and growing the community’s OSS artifacts, descriptions,

and representations. Third, each community is interested in updating and evolving

the community's information sharing Web sites. In recognition of these community

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 35 -
k^s^i=mlpqdo^ar^qb=p`elli=

requirements, it is not surprising to observe the emergence of commercial efforts

(e.g., SourceForge and CollabNet) that offer community support systems that are

intended to address these requirements, such as is used in projects like those in

Tigris.org, or even the Avogadro project in the Bioinformatics community see

(Exhibits 2 and 3).

4.6. Identifying a Common Foundation for the Development of
OSS Requirements

Based on the data and analysis presented above, it is possible to begin to

identify what items, practices, or capabilities may better characterize how

requirements for OSS are developed and articulated. This centers around the

preceding OSS requirements processes that enable the emergent creation, usage,

and evolution of informal software descriptions as the vehicle for developing OSS

requirements.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 36 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 37 -
k^s^i=mlpqdo^ar^qb=p`elli=

5. Understanding OSS Requirements

First, there is no single correct, right, or best way/method for constructing

software system requirements. The requirements engineering approach long

advocated by the software engineering and software requirements community does

not account for the practice nor results of OSS system, project, or community

requirements. OSS requirements (and subsequent system designs) are different.

Thus, given the apparent success of sustained exponential growth for certain OSS

systems [10, 52], and for the world-wide deployment of OSSD practices, it is safe to

say that the ongoing development of OSS systems points to the continuous

development, articulation, adaptation, and reinvention of their requirements [cf. 50]

as capabilities that emerge through socio-technical interactions between people,

discursive artifacts, and the systems they use, rather than as needs to be captured

before the proposed system comes into use.

Second, the traditional virtues of high-quality software system requirements,

namely, their consistency, completeness, traceability, and internal correctness are

not so valued in OSSD projects. OSSD projects focus attention and practice to other

virtues that emphasize community development and participation, as well as other

socio-technical concerns. Thus, as with the prior observation, OSS system

requirements are different, and therefore may represent an alternative paradigm for

how to develop robust systems that are open to both their developers and users.

Nonetheless, there are many examples of the use of tools and techniques for

articulating OSS requirements as well as for tracing or monitoring their development

[cf. 46].

Third, OSS developers are generally also end-users of the systems they

develop. Thus, there is no “us-them” distinction regarding the roles of developers

and end-users, as is commonly assumed in traditional system development

practices. Because the developers are also end-users, communication gaps or

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 38 -
k^s^i=mlpqdo^ar^qb=p`elli=

misunderstandings often found between developers and end-users are typically

minimized.

Fourth, OSS requirements tend to be distributed across space, time, people,

and the artifacts that interlink them. OSS requirements are thus decentralized—that

is, decentralized requirements that co-exist and co-evolve within different artifacts,

online conversations, and repositories, as well as within the continually emerging

interactions and collective actions of OSSD project participants and surrounding

project social world. To be clear, decentralized requirements are not the same as

the (centralized) requirements for decentralized systems or system development

efforts. Traditional software engineering and system development projects assume

that their requirements can be elicited, captured, analyzed, and managed as

centrally controlled resources (or documentation artifacts) within a centralized

administrative authority that adheres to contractual requirements and employs a

centralized requirements artifact repository—that is, centralized requirements. Once

again, OSS projects represent an alternative paradigm to that long advocated by

software engineering and software requirements engineering community.

Last, given that OSS developers are frequently the source for the

requirements they realize in hindsight (i.e., what they have successfully implemented

and released denote what was required) rather than in foresight, perhaps it is better

to characterize such software system requirements as instead “software system

capabilities” (and not software development practices associated with capability

maturity models). She or he who codes determines what the requirements will be

based on what they have coded—the open source code frequently appears before

there is some online discourse that specifies how and why it was done. OSS

developers may simply tell others what was done, whether or not they discussed

and debated it beforehand. They are generally under no contractual obligation to

report and document software functionality prior to its coding and implementation.

Subsequently, OSS capabilities embody requirements that have been found

retrospectively to be both implementable and sustainable across releases. Software

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 39 -
k^s^i=mlpqdo^ar^qb=p`elli=

capabilities specification—specifying what the existing OSS system does—may

therefore become a new engineering practice and methodology that can be

investigated, modeled, supported, and refined. This in turn may then lead to

principles for how best to specify software system capabilities.

6. Conclusions

The paper reports on a study that investigates, compares, and describes how

the requirements engineering processes occurs in OSSD projects found in different

communities. A number of conclusions can be drawn from the findings presented.

First, this study sought to discover and describe the practices and artifacts

that characterize the requirements for developing OSS systems. Perhaps the

processes and artifacts that were described were obvious to the reader. This might

be true for those scholars and students of software requirements engineering who

have already participated in OSS projects, though advocates who have do not report

on the processes described here [11, 17, 42, 43]. For the majority of students who

have not participated, it is disappointing to not find such descriptions, processes, or

artifacts within the classic or contemporary literature on requirements engineering [5,

9, 23, , 40]. In contrast, this study sought to develop a baseline characterization of

the how the requirements process for OSS occurs and the artifacts (and other

mechanisms) employed. Given such a baseline of the "as-is" process for OSS

requirements engineering, it now becomes possible to juxtapose one or more "to-be"

prescriptive models for the requirements engineering process, then begin to address

what steps are needed to transform the as-is into the to-be [48]. Such a position

provides a basis for further studies which seek to examine how to redesign OSS

practices into those closer to advocated by classic or contemporary scholars of

software requirements engineering. This would enable students or scholars of

software requirements engineering, for example, to determine whether or not OSSD

would benefit from more rigorous requirements elicitation, analysis, and

management, and if so, how.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 40 -
k^s^i=mlpqdo^ar^qb=p`elli=

Second, this study reports on the centrality and importance of software

informalisms to the development of OSS systems, projects, and communities. This

result might be construed as an advocacy of the 'informal' over the 'formal' in how

software system requirements are or should be developed and validated, though it is

not so intended. Instead, attention to software informalisms used in OSS projects,

without the need to coerce or transform them into more mathematically formal

notations, raises the issue of what kinds of engineering virtues should be articulated

to evaluate the quality, reliability, or feasibility of OSS system requirements so

expressed. For example, traditional software requirements engineering advocates

the need to assess requirements in terms of virtues like consistency, completeness,

traceability, and correctness [5, 9, 23, , 40]. From the study presented here, it

appears that OSS requirements artifacts might be assessed in terms of virtues like

encouragement of community building; freedom of expression and multiplicity of

expression; readability and ease of navigation; and implicit versus explicit structures

for organizing, storing and sharing OSS requirements. "Low" measures of such

virtues might potentially point to increased likelihood of a failure to develop a

sustainable OSS system. Subsequently, improving the quality of such virtues for

OSS requirements may benefit from tools that encourage community development;

social interaction and communicative expression; software reading and

comprehension; community hypertext portals and Web-based repositories.

Nonetheless, resolving such issues is an appropriate subject for further study.

Overall, OSSD practices are giving rise to a new view of how complex

software systems can be constructed, deployed, and evolved. OSSD does not

adhere to the traditional engineering rationality found in the legacy of software

engineering life cycle models or prescriptive standards. The development OSS

system requirements is inherently and undeniably a complex web of socio-technical

processes, development situations, and dynamically emerging development

contexts [2, 19, 29, 61, 62]. In this way, the requirements for OSS systems

continually emerge through a web of community narratives. These extended

narratives embody discourse that is captured in persistent, globally accessible, OSS

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 41 -
k^s^i=mlpqdo^ar^qb=p`elli=

informalisms that serve as an organizational memory [1], hypertextual issue-based

information system [7, 34], and a networked community environment for information

sharing, communication, and social interaction [13, 27, 58, 61]. Consequently,

ethnographic methods are needed to elicit, analyze, validate, and communicate what

these narratives are, what form they take, what practices and processes give them

their form, and what research methods and principles are employed to examine

them [19, 20, 29, 40, 53, 57, 62]. This report thus contributes a new study of this

kind.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 42 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 43 -
k^s^i=mlpqdo^ar^qb=p`elli=

List of References

1. Ackerman, M.S., Halverson, C.A.: Reexamining Organizational Memory,
Communications ACM, 43(1), 59-64, January (2000).

2. AckermanAtkinson, C.J.: Socio-Technical and Soft Approaches to Information
Requirements Elicitation in the Post-Methodology Era', Requirements
Engineering, 5, 67-73, (2000).

3. Bollinger, T.: Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense, The MITRE Corporation, 2 January (2001). Available
at http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

4. Cagney, G., Amiri, S., Prewararadena, T., Lindo, M., Emili, A.: In silico
proteome analysis to facilitate proteomic experiments using mass spectrometry,
Proteome Science, 1(5), doi:10.1186/1477-5956-1-5, (2003).

5. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering,
Future of Software Engineering (FOSE'07), 285-303, IEEE Computer Society,
May (2007).

6. Cleveland, C.: The Past, Present, and Future of PC Mod Development, Game
Developer, 46-49, February, (2001).

7. Conklin, J., Begeman, M.L.: gIBIS: A Hypertext Tool for Effective Policy
Discussion, ACM Transactions Office Information Systems, 6(4), 303-331,
October, (1988).

8. Cybulski, J.L., Reed, K.: Computer-Assisted Analysis and Refinement of
Informal Software Requirements Documents, Proceedings Asia-Pacific
Software Engineering Conference (APSEC'98), Taipei, Taiwan, R.O.C., 128-
135, December (1998).

9. Davis, A.M.: Software Requirements: Analysis and Specification, Prentice-Hall,
(1990).

10. Deshpande, A., Riehle, D. The Total Growth of Open Source Software, in IFIP
International Federation for Information Processing, Volume 275, Open Source
Development, Communities, and Quality, Russo, B., Damiani, E., Hissam, S.,
Lundell, B., Succi, G. (Eds.), Milan, IT, (2008).

11. DiBona, C. Ockman, S., Stone, M.: Open Sources: Voices from the Open
Source Revolution, O'Reilly Press, Sebastopol, CA, (1999).

12. Elliott, M., Scacchi, W.: Free Software Development: Cooperation and Conflict
in A Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source
Software Development, 152-172, IGI Publishing, Hershey, PA, (2005).

13. Elliott, M., Scacchi, W.: Mobilization of Software Developers: The Free
Software Movement, Information, Technology and People, 21(1), 4-33, (2008).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 44 -
k^s^i=mlpqdo^ar^qb=p`elli=

14. Elliott, M., Ackerman, M.S. & Scacchi, W.: Knowledge Work Artifacts: Kernel
Cousins for Free/Open Source Software Development, Proc. ACM Conf.
Support Group Work (Group07), Sanibel Island, FL, 177-186, November,
(2007).

15. Fielding,R.T.: Shared Leadership in the Apache Project, Communications ACM,
42(4), 42-43, April, (1999).

16. Fogel, K.: Open Source Development with CVS, Coriolis Press, Scottsdale, AZ,
(1999).

17. Fogel, K.: Producing Open Source Software: How to Run a Successful Free
Software Project, O'Reilly Press, Sebastopol, CA, (2005).

18. Guertin N.: Naval Open Architecture: Open Architecture and Open Source in
DOD, Presentation at “Open Source - Open Standards - Open Architecture,”
Association for Enterprise Integration Symposium, Arlington VA, 14 March,
(2007).

19. Goguen, J.A.: Formality and Informality in Requirements Engineering (Keynote
Address), Proc. 4th. Intern. Conf. Requirements Engineering, 102-108, IEEE
Computer Society, (1996).

20. Hine, C.: Virtual Ethnography, SAGE Publishers, London, (2000).
21. Howison, J., Conklin, M., Crowston, K.: Flossmole: A collaborative repository

for floss research, data, and analysis. Intern. J. Information Technology and
Web Engineering. 1(3), 17-26, (2006).

22. Howison, J., Wiggins, A., Crowston, K.: eResearch workflows for studying free
and open source software development. In IFIP International Federation for
Information Processing, Volume 275, Open Source Development,
Communities, and Quality, Russo, B., Damiani, E., Hissam, S., Lundell, B.,
Succi, G. (Eds.), Milan, IT, (2008).

23. Jackson, M.: Software Requirements & Specifications: Practice, Principles, and
Prejudices, Addison-Wesley Pub. Co., Boston, MA, (1995).

24. Jensen, C., Scacchi,W. Process Modeling Across the Web Information
Infrastructure, Software Process--Improvement and Practice, 10(3), 255-272,
July-September, (2005).

25. Jensen, C., Scacchi,W.: Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study, in Proc. 29th. Intern. Conf. Software
Engineering, Minneapolis, MN, ACM Press, 364-374, May (2007).

26. Justice, N.: Open Source Software Challenge: Delivering Warfighter Value,
Presentation at “Open Source - Open Standards - Open Architecture,”
Association for Enterprise Integration Symposium, Arlington VA, 14 March,
(2007).

27. Kim, A.J.: Community-Building on the Web: Secret Strategies for Successful
Online Communities, Peachpit Press, (2000).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 45 -
k^s^i=mlpqdo^ar^qb=p`elli=

28. Klein, H., Myers, M.D.: A Set of Principles for Conducting and Evaluating
Intrepretive Field Studies in Information Systems, MIS Quarterly, 23(1), 67-94,
March (1999).

29. Kling, R., Scacchi, W.: The Web of Computing: Computer technology as social
organization. In M. Yovits (ed.), Advances in Computers, 21, 3-90. Academic
Press, New York, (1982).

30. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and
Techniques, John Wiley and Sons, Inc, New York, (1998).

31. Kushner, D.: Masters of Doom: How Two Guys Created an Empire and
Transformed Pop Culture, Random House, New York, (2003).

32. Kwansik, B., Crowston, K.: Introduction to the special issue: Genres of digital
documents, Information, Technology and People, 18(2), (2005).

33. Lanzara, G. F., Morner, M.: Artifacts rule! how organizing happens in open
software projects. In Czarniawska, B. and Hernes, T., (Eds.), Actor Network
Theory and Organizing. Copenhagen Business School Press, Copenhagen,
(2005).

34. Lee, J.: SIBYL: a tool for managing group design rationale, Proc. Conf.
Computer-Supported Cooperative Work (CSCW'90), Los Angeles, CA, ACM
Press, 79-92, (1990).

35. Madey, G., Freeh, V., Tynan, R.: Modeling the F/OSS Community: A
Quantitative Investigation, in S. Koch (ed.), Free/Open Source Software
Development, 203-221, Idea Group Publishing, Hershey, PA, (2005).

36. McDowell, P., Darken, R., Sullivan, J., Johnson, E.: Delta3D: A Complete Open
Source Game and Simulation Engine for Building Military Training Systems, J.
Defense Modeling and Simulation: Applications, Methodology, Technology,
3(3), 143-154, July, (2006).

37. Mi, P., Scacchi, W.: A Knowledge-based Environment for Modeling and
Simulating Software Engineering Processes. IEEE Transactions on Knowledge
and Data Engineering, 2(3), pp. 283-294, Sept (1990).

38. Noll, J., Scacchi, W.: Supporting Software Development in Virtual Enterprises.
J. Digital Information, 1(4), February (1999),
http://jodi.ecs.soton.ac.uk/Articles/v01/i04/Noll/

39. Noll, J., W. Scacchi.: Specifying Process-Oriented Hypertext for Organizational
Computing, J. Network and Computer Applications, 24(1), 39-61, (2001).

40. Nuseibeh, R., Easterbrook, S.: Requirements Engineering: A Roadmap, in A.
Finkelstein (ed.), The Future of Software Engineering, ACM Press, (2000).

41. Oinn T., Addis M., Ferris J., Marvin D. Senger M., Greenwood M., Carver T.,
Glover K., Pocock M.R., Wipat A, Li, P.: Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics J., 20(17), 3045-
3054, (2004).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 46 -
k^s^i=mlpqdo^ar^qb=p`elli=

42. Pavlicek, R.: Embracing Insanity: Open Source Software Development, SAMS
Publishing, Indianapolis, IN, (2000).

43. Raymond, E.: The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, O’Reilly and Associates, Sebastopol,
CA, (2001).

44. Riechers, C.: The Role of Open Technology in Improving USAF Software
Acquisition, Presentation at “Open Source - Open Standards - Open
Architecture,” Association for Enterprise Integration Symposium, Arlington VA,
14 March (2007).

45. Ripoche, G., Gasser, L.: Scalable Automatic Extraction of Process Models for
Understanding F/OSS Bug Repair, Proc. 16th Intern. Conf. Software
Engineering & its Applications (ICSSEA-03), Paris, France, December, (2003).

46. Robinson, W.: A Requirements Monitoring Framework for Enterprise Systems,
Requirements Engineering, 11(1), 17-41, (2006).

47. Rosenberg, S.: Dreaming in Code: Two Dozen Programmers, Three years,
4732 Bugs, and One Quest for Transcedent Software, Crown Publishers, New
York, (2007).

48. Scacchi, W.: Understanding Software Process Redesign using Modeling,
Analysis and Simulation , Software Process--Improvement and Practice,
5(2/3),183-195, (2000).

49. Scacchi, W.: Understanding the Requirements for Developing Open Source
Software Systems, IEE Proceedings--Software, 149(1), 24-39, February (2002).

50. Scacchi, W.: Free/Open Source Software Development Practices in the
Computer Game Community, IEEE Software, 21(1), 59-67, January/February
(2004).

51. Scacchi, W.: Socio-Technical Interaction Networks in Free/Open Source
Software Development Processes, in S.T. Acuña and N. Juristo (eds.),
Software Process Modeling, 1-27, Springer Science+Business Media Inc., New
York, (2005).

52. Scacchi, W.: Understanding Free/Open Source Software Evolution, in N.H.
Madhavji, J.F. Ramil and D. Perry (eds.), Software Evolution and Feedback:
Theory and Practice, 181-206, John Wiley and Sons Inc, New York, (2006).

53. Scacchi, W.: Free/Open Source Software Development: Recent Research
Results and Methods, in M.V. Zelkowitz (ed.), Advances in Computers, 69, 243-
295, (2007).

54. Scacchi, W.: Understanding the Development of Free E-Commerce/E-Business
Software: A Resource-Based View, in S.K. Sowe, I. Stamelos, and I.
Samoladas (eds.), Emerging Free and Open Source Software Practices, IGI
Publishing, Hershey, PA, 170-190, (2007).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 47 -
k^s^i=mlpqdo^ar^qb=p`elli=

55. Scacchi, W., Alspaugh, T.: Emerging Issues in the Acquisition of Open Source
Software within the U.S. Department of Defense, Proc. 5th Annual Acquisition
Research Symposium, Naval Postgraduate School, Monterey, CA, (2008).

56. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K.: Understanding
Free/Open Source Software Development Processes, Software Process--
Improvement and Practice, 11(2), 95-105, March/April, (2006).

57. Scacchi, W., Jensen, C., Noll, J., Elliott, M.: Multi-Modal Modeling, Analysis and
Validation of Open Source Software Development Processes, Intern. J. Internet
Technology and Web Engineering, 1(3), 49-63, (2006).

58. Smith, M., Kollock, P. (Eds.): Communities in Cyberspace, Routledge, London,
(1999).

59. Spinuzzi, C.: Tracing Genres through Organizations: A Sociocultural Approach
to Information Design, MIT Press, Cambridge, MA, (2003).

60. Starrett, E.: Software Acquisition in the Army, Crosstalk: The Journal of
Defense Software Engineering, 4-8, May (2007).

61. Truex, D., Baskerville, R., Klein, H.: Growing Systems in an Emergent
Organization, Communications ACM, 42(8), 117-123, (1999)

62. Viller, S., Sommerville, I.: Ethnographically informed analysis for software
engineers, Int. J. Human-Computer Studies, 53, 169-196, (2000).

63. Weathersby, J.M.: Open Source Software and the Long Road to Sustainability
within the U.S. DoD IT System, The DoD Software Tech News, 10(2), 20-23,
June (2007).

64. Wheeler, B.: Open Source 2010: Reflections on 2007, EDUCAUSE,
January/February 49-67, (2007).

65. Wheeler, D.A.: Open Source Software (OSS) in U.S. Government Acquisitions,
The DoD Software Tech News, 10(2), 7-13, June (2007).

66. Yamaguchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with
Lean Media: How Open-Source Software Succeeds, Proceedings of the
Conference on Computer Supported Cooperative Work, (CSCW'00), 329-338,
Philadelphia, PA, ACM Press, December (2000).

67. Zelkowitz, M.V. and Wallace, D.: Experimental Models for Validating
Technology, Computer, 31, (5), pp. 23-31, May 1998.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 48 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2008 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 BCA: Contractor vs. Organic Growth
 Defense Industry Consolidation
 EU-US Defense Industrial Relationships
 Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
 Managing Services Supply Chain
 MOSA Contracting Implications
 Portfolio Optimization via KVA + RO
 Private Military Sector
 Software Requirements for OA
 Spiral Development
 Strategy for Defense Acquisition Research
 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies
 Contracting Government Procurement Functions
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Model for Optimizing Contingency Contracting Planning and Execution
 Navy Contract Writing Guide
 Past Performance in Source Selection
 Strategic Contingency Contracting
 Transforming DoD Contract Closeout
 USAF Energy Savings Performance Contracts
 USAF IT Commodity Council
 USMC Contingency Contracting

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via leasing: MPS case
 Budget Scoring
 Budgeting for Capabilities Based Planning
 Capital Budgeting for DoD
 Energy Saving Contracts/DoD Mobile Assets
 Financing DoD Budget via PPPs
 Lessons from Private Sector Capital Budgeting for DoD Acquisition

Budgeting Reform
 PPPs and Government Financing
 ROI of Information Warfare Systems
 Special Termination Liability in MDAPs
 Strategic Sourcing
 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment
 Individual Augmentation
 Learning Management Systems
 Moral Conduct Waivers and First-tem Attrition
 Retention
 The Navy’s Selective Reenlistment Bonus (SRB) Management System
 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance
 Army LOG MOD
 ASDS Product Support Analysis
 Cold-chain Logistics
 Contractors Supporting Military Operations
 Diffusion/Variability on Vendor Performance Evaluation
 Evolutionary Acquisition
 Lean Six Sigma to Reduce Costs and Improve Readiness

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Naval Aviation Maintenance and Process Improvement (2)
 Optimizing CIWS Lifecycle Support (LCS)
 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance

Activity
 Pallet Management System
 PBL (4)
 Privatization-NOSL/NAWCI
 RFID (6)
 Risk Analysis for Performance-based Logistics
 R-TOC Aegis Microwave Power Tubes
 Sense-and-Respond Logistics Network
 Strategic Sourcing

Program Management

 Building Collaborative Capacity
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Collaborative IT Tools Leveraging Competence
 Contractor vs. Organic Support
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Managing the Service Supply Chain
 Measuring Uncertainty in Eared Value
 Organizational Modeling and Simulation
 Public-Private Partnership
 Terminating Your Own Program
 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

